生物医学研究

抽象的

Evaluation of polymerization shrinkage of dental composites by microcomputed tomography

Hakan Kamalak, Aliye Kamalak

Objective: The aim of this study was to evaluate the polymerization shrinkage of different commercially available dental composites with micro-computed tomography (μ-CT).

Method: The study group included eight different flowable composites; Surefil SDR Flow (SDR), Charisma Flow (CHF), Clearfil Majesty Flow (CMF), Vertise Flow (VF), Grandio Flow (GF), Filtek Supreme Ultimate Flow (3MEFU), Filtek Bulk Flow (3MBF), X-Tra Base Flow (XTB). Composite materials were placed in standard cylindrical teflon molds and these were scanned for 1 h using μ-CT Skyscan 1172. Polymerization was not observed during scanning since the internal chamber of the equipment was completely dark. When the scanning was complete, materials were polymerized with LED light as per producer recommendations and rescanned with Skyscan 1172 using the same parameters. After the scanning process was over, test materials were analyzed using μ-CT-CTAn software programme.

Results: Data were analyzed using Kruskal Wallis, Mann Whitney U and Wilcoxon test at a significance level of α=0.05. Polymerization shrinkage ranged between 1.44% (CMF) and 2.73% (CHF). Bulk-fill and Self-adhesive composites were significantly lower (p<0.05) than those of the others.

Conclusion: All tested materials were able to achieve acceptable shrinkage at 2-4 mm depth. The higher shrinkage of hybrid composites over that of other groups may indicate a potential for higher interfacial stresses. However, the bulk fill composite showed low shrinkage that may prove less damaging to the interface.

免责声明: 此摘要通过人工智能工具翻译,尚未经过审核或验证。