抽象的
Evaluating the effect of peroral bentonite administration on iron disposition and mortality in rat model of acute iron toxicity
Demir O, Kaplan YC, Gokalp Yildiz F, Aslan O, Karadas B, Gelal A, Yigitbasi T, Dost T, Birincioglu M
Activated charcoal lacks efficacy in preventing the absorption of iron. We hypothesized that bentonite, which is an inert natural adsorbent, may decrease the iron absorption and ameliorate the toxic manifestations in rats after iron poisoning. For the pharmacokinetic experiments, rats were randomized into three groups which received iron (as ferrous sulfate)+distilled water (Control), iron+bentonite (B5 (five-fold higher than the iron dose)), iron+bentonite (B10 (ten-fold higher than the iron dose)) via gavage. The blood samples were taken for six hours. The area under the plasma concentration-time curve (AUC) (0-360) (min μg/dl), peak concentration of iron in serum (Cmax) and time to reach Cmax (tmax) were calculated from the individual serum concentration-time profiles. For the survival part, rats were randomized into three groups and received (LD50), iron+distilled water (Control (s)), iron +bentonite (Bs5 (fivefold bentonite)) and iron+bentonite (Bs10) via gavage. Rats were observed for 72 hours. Iron levels showed a wide variation, and no significant differences in AUC (0-360), Cmax and tmax were detected. However, the mortality rate was significantly lower (9.1%) in the Bs10 group, as compared to Control (s) (55.6%) groups. Bentonite was found to be effective in preventing mortality in the rat model of acute iron toxicity.